

NOAA FISHERIES

NorthwestFisheriesScience Center

Does Passage through Snake River Dams Cause Latent Mortality?

Tiffani Marsh and Steven G. Smith

1 March 2021

What is "Latent Mortality"?

Mortality caused by passage through dams and reservoirs but not expressed until after hydrosystem passage is complete.

Why might you think latent mortality is occurring?

- 1. Productivity differences between upriver and downriver stocks larger than explained by direct dam-passage mortality ("PATH" process).
- 2. Benefits of smolt transportation not as large as predicted from direct inriver survival.
- 3. Apparent "dose-response" relationship between smolt passage through bypass facilities and smolt-to-adult return rates.

Why might you think latent mortality is occurring?

- 1. Productivity differences between upriver and downriver stocks larger than explained by direct dam-passage mortality ("PATH" process).
- 2. Benefits of smolt transportation not as large as predicted from direct inriver survival.
- 3. Apparent "dose-response" relationship between smolt passage through bypass facilities and smolt-to-adult return rates.

These are all circumstantial – how about an experiment?

Release Fish at Different Locations and Compare Survival

IH – "Dam-reference": Tailrace of Ice Harbor Dam after truck transport

versus

LG – "Dam-passage": Tailrace of Lower Granite Dam after equivalent truck transport

(Third site, not included today:

LN – "Truck-reference": Tailrace of Lower Granite Dam without truck transport)

All collected and tagged at Lower Granite Dam.

Latent Mortality

• H_0 : $SAR_{LG} \ge SAR_{IH}$ vs. H_A : $SAR_{LG} < SAR_{IH}$

(McNary-to-Bonneville SARs)

- Rejection of Null Hypothesis Means:
 - There is evidence that *after leaving McNary Dam* survival was lower for dam-passage group (LG) than for dam-reference group (IH)

LG group experienced passage at three of the four Lower Snake River dams after release

Study Design (2005-2011)

- Hatchery Spring/Summer Chinook Salmon
- Collect and Tag fish at Lower Granite Dam, 20-25 April mid May
- Planned 10 replicates of (IH,LG,LN) within each year
 - Each replicates of 3 groups *released* same day
 - Expected to see within-season trend in SAR

Results

Annual Tagging Results

			Total			
Study year	Replicates	Dam-reference	Dam-passage	Truck-reference	Goal	Released
2005	7	10,833	13,406	22,826	301,073	47,065
2006	10	38,468	56,939	94,024	301,073	189,431
2007	6	16,735	23,820	31,198	120,000	71,753
2008	10	28,790	42,386	50,542	120,000	121,718
2009	10	28,878	45,511	46,217	120,000	120,606
2010	10	29,001	45,487	47,825	120,000	122,313
2011	10	29,050	45,734		74,430	74,784
Total		181,755	273,283	292,632		747,670

Bootstrap at Release Group level

	Trucked and Released in IH tailrace					Trucked and Released in LG tailrace					
Rep.	Rel.	Estimated MCN	Adults	SAR	CI		Rel.	Estimated MCN	Adults	SAR	CI
5	3,276	2,888 (2,758 - 3,032)	26	0.91	0.58-1.27		4,287	3,642 (3,431 - 3,886)	18	0.50	0.29-0.76
6	2,523	2,356 (2,223 - 2,500)	22	0.94	0.57-1.34		3,976	2,946 (2,790 - 3,132)	10	0.35	0.14-0.58
7	2,137	1,897 (1,777 - 2,036)	14	0.75	0.38-1.17		2,417	1,846 (1,686 - 2,017)	10	0.55	0.23-0.91
8	2,812	2,550 (2,417 - 2,699)	15	0.59	0.32-0.94		4,117	2,957 (2,788 - 3,134)	7	0.24	0.07-0.41
9	3,582	3,258 (3,080 - 3,465)	19	0.59	0.34-0.86		5,713	4,191 (4,010 - 4,393)	4	0.10	0.03-0.20
10	2,405	2,087 (1,966 - 2,224)	10	0.49	0.20-0.80		3,310	2,463 (2,305 - 2,649)	2	0.09	0.01-0.22
Total	16,735	15,036 (14,722-15,425)	106	0.71	0.57-0.84		23,820	18,045 (17,607-18,527)	51	0.28	0.21-0.36
	Relative SAR: 0.28/0.71 = 0.40					0 (0.00-0.53)					
		Trucked and Released	l in IH tail	race			Trucked and Released in LG tailrace				
Rep.	Rel.	Detected MCN	Adults	SAR	CI		Rel.	Detected MCN	Adults	SAR	CI
5	3,276	1,081	9	0.85	0.38-1.46		4,287	1,063	5	0.49	0.11-0.96
6	2,523	768	8	1.06	0.41-1.88		3,976	1,029	2	0.21	0.03-0.51
7	2,137	701	3	0.45	0.05-0.99		2,417	595	1	0.20	0.06-0.54
8	2,812	912	7	0.78	0.24-1.42		4,117	1,117	1	0.11	0.03-0.29
9	3,582	1,060	7	0.68	0.21-1.21		5,713	1,537	1	0.08	0.02-0.21
10	2,405	789	3	0.40	0.04-0.91		3,310	922	0	0.04	0.00-0.33
Total	16,735	5,311	37	0.70	0.49-0.93		23,820	6,263	10	0.16	0.07-0.27
Relative SAR: 0.16/0.70 = 0.23 (0.00-0.41)											

Relative SAR: LG v IH Matched by Release Date

Temporal Trends within Year

SAR generally decreases for later migrants as expected

In migration timing, dam-reference groups match better with dam-passage groups released 5-7 days earlier

Control for Migration Timing (date at McNary)

- Drop 3 latest dam-passage (LGR tailrace) and 3 earliest dam-reference (IHR tailrace) groups
 - McNary timing of resulting groups much more similar

Relative SAR: LG v IH Matched by McNary Date

Relative SAR: LG v IH Matched by McNary Date

Logistic Regression for Prob(return as adult)

 Use only individuals detected at McNary (McNary date known)

- Candidate predictors for Adult return:
 - Release location (LG or IH)
 - Release date
 - McNary date
 - Length at time of tagging
 - Number of times detected at LGO, LMN, IHR

Logistic Regression

- Results
 - Significant variation among years
 - McNary date a better predictor than release date
 - Larger at tagging = more likely to return

Logistic Regression

- Results
 - Adjusting for McNary date and length:
 - Release location not significant overall
 - However, suggestion of dose-response based on number of times detected.

(careful: length and #detections are correlated)

Conclusions

 Migration timing and smolt size are best predictors of adult return

 Evidence of a small amount of "latent mortality," which might be associated with passage through juvenile bypass systems

