Association between pinniped abundance and survival for individual populations of adult spring/summer Chinook salmon in the lower Columbia River

Mark Sorel^{1,2}, R. Zabel², D. Johnson³, A.M. Wargo Rub⁴ and S. Converse⁵

Fishes Without Borders, Idaho Chapter American Fisheries Society Annual Meeting, March 1, 2021

¹University of Washington; School of aquatic and fishery sciences; Seattle, WA 98105 . E-mail: marks6@uw.edu

²NOAA Fisheries; Northwest Fisheries Science Center; Seattle, WA 98112.

³NOAA Fisheries; Alaska Fisheries Science Center; Seattle, WA 98115

⁴NOAA Fisheries; Northwest Fisheries Science Center; Hammond, OR 97121.

⁵U.S. Geological Survey; Washington Cooperative Fish and Wildlife Research Unit; University of Washington; Seattle, WA 98105

Acknowledgements

Coastwide marine mammal predation of Chinook salmon from the west coast of North America

- Marine Mammal Protection Act of 1972
 - successful in recovering many populations
- Has led to increased consumption of Chinook salmon

Northwest sea lions at dams

- Sea lions feeding below dams have been a particular problem
 - Herschel and friends at Ballard Locks
 - Bonneville Dam and Willamette Falls

Photo: Seattle Post Intelligencer

Photo: L.E. Baskow

Sea lion predation of spring Chinook in the Bonneville Dam tailrace

 Predation mortality was higher earlier in the spring Chinook run

Keefer et al. 2012, Trans Am Fish Soc

Population-specific risk

 Earlier-migrating populations experienced higher predation risk below Bonneville Dam

River mouth haul out counts

- Sea lions haul out in Astoria (EMB) and South Jetty
 - ~200 km from Bonneville
- Many more animals than below Bonneville Dam
- EMB count increased precipitously from 2013 to 2016

Brown et al. 2020, Northwest Naturalist

Survival from Astoria to Bonneville Dam

- Survival was negatively associated with EMB sea lion counts
- Survival was lower earlier in spring
 - Suggests earlier populations experienced higher mortality

Wargo Rub et al. 2019, CJFAS

Objectives

- Estimate mortality for individual populations as a function of migration timing and EMB sea lions
- Estimate additional mortality associated with increased sea lion abundance in 2013-2015 relative to 2010-2012

Photo credit: B. Wright, ODFW

Methods: Multistate model (process)

- $\phi_{i,t,y}$ = Daily survival of individual i on day t in year y
 - Modeled as function of sea lions, temperature, and hatchery/wild status (clip)
 - $logit(\phi_{i,t,y}) = \beta_{t,y}^{Sea\ lion} * Sea\ lion_{t,y} + \beta_{t,y}^{Temp} * Temp_{t,y} + \beta_i^{Clip} * Clip_i$
- Daily probability of passing Bonneville Dam if alive and downstream
 - Function of day of year at Astoria, river discharge, and spill at Bonneville Dam
 - Parametric time-to-event modeling framework

Methods: Multistate model (data)

- Data
 - Capture histories: release date and Bonneville Dam passage day (or never detected)
 - Assumed perfect detection at Bonneville Dam
 - Assumed no straying
 - Covariates: Daily sea lion counts at EMB (Astoria), river environment at Bonneville
- Likelihood
 - Hidden Markov model likelihood using forward algorithm

Methods: Population-specific migration timing

Multistate model gave us mortality rates depending on Astoria departure day and year

Need information on population-specific arrival timing to estimate population-specific

mortality 2015

Methods: Population-specific migration timing

Multistate model gave us mortality rates depending on Astoria departure day and year

Need information on population-specific arrival timing to estimate population-specific mortality

Methods: Population specific migration timing

• $p(A_{p,t,y})$ = Probability of arriving at Astoria on day t in year y for fish from population p

•
$$p\left(A_{p,\frac{t}{n \, days},y}\right) \sim Beta(\alpha_{p,y},\beta_{p,y})$$

- Data
 - Detection dates of known-population fish at Bonneville Dam
 - PIT-tagged as juveniles in natal stream
- Likelihood
 - Daily probabilities of Astoria arrival translated to Bonneville Dam arrival based on the travel time and survival model
 - Used daily probabilities of Bonneville Dam arrival to calculate data likelihood

To calculate annual population-specific mortality

Calculated weighted averages based on the proportion of each population arriving on

each day

- To calculate annual population-specific mortality
 - Calculated weighted averages based on the proportion of each population arriving on each day

• Population- and year-specific mortality $(M_{p,y})$ is the average mortality of fish with different Astoria departure days t, weighted by $p(A_{p,t,y})$

•
$$M_{p,y} = \sum_t M_{t,y} p(A_{p,t,y})$$

• Population- and year-specific mortality $(M_{p,y})$ is the average mortality of fish with different Astoria departure days t, weighted by $p(A_{p,t,y})$

•
$$M_{p,y} = \sum_t M_{t,y} p(A_{p,t,y})$$

- Calculated the change in mortality (Δ M) between 2010-2012 (baseline sea lions) and 2013-2015 (high sea lions)
 - $\Delta M_p = M_{p,2013-2015} M_{p,2010-2012}$
 - Useful for assessing potential impact on populations

Results: Travel time

• Longer travel time for early-arriving fish

Results: Travel time and mortality

- Longer travel time for early-arriving fish
- Higher mortality for early-arriving fish
- Higher mortality in years with greater sea lions (2013-2015), particularly for earlier arriving fish

Results: Populationspecific migration timing

- Considerable diversity among populations
 - Diversity within Major Population Groups

Results: Population specific change in mortality

- 9 earliest-arriving populations experienced an additional ~20% mortality in 2013-2015
- 9 latest-arriving populations experienced an additional ~10% mortality

Discussion

- Increased spring sea lion counts after 2012 were associated with increased Chinook salmon mortality
 - Appears to have greatest impact on early migrating populations
 - Unless travel times of earlier populations were faster
- Increased mortality may increase extinction risk, especially for earlymigrating populations

Brown et al. 2020, Northwest Naturalist

Discussion

- Loss of early-migrating fish could reduce stability and adaptive capacity of Evolutionarily Significant Units
- Hatchery populations also affected
 - Many migrate early
- Future sea lions counts...TBD

Photo credit: R. Stansell, ACOE

Discussion

- Increased removal of California and Steller sea lions was recently authorized under the Endangered Salmon Predation Prevention Act
- Continued monitoring is needed to determine both sea lion and salmon responses to management

Photo credit: B. Wright, ODFW

Photo credit: S. Jeffries, WDFW

Thank you!

Received: 19 December 2019

Accepted: 18 September 2020

DOI: 10.1111/1365-2664.13772

Journal of Applied Ecology

RESEARCH ARTICLE

Estimating population-specific predation effects on Chinook salmon via data integration

Mark H. Sorel^{1,2} | Richard W. Zabel¹ | Devin S. Johnson³ | A. Michelle Wargo Rub¹ | Sarah J. Converse⁴